Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Oh, you're so random
Search
Vicent Martí
March 25, 2012
Programming
14
2.6k
Oh, you're so random
Randomness and pink ponies in Codemotion Rome 2012
Vicent Martí
March 25, 2012
Tweet
Share
More Decks by Vicent Martí
See All by Vicent Martí
Unicorns Die With Bullets Made of Glitter
tanoku
6
580
Threedee Tales From Urban Bohemia
tanoku
3
890
My Mom told me that Git doesn't scale
tanoku
28
2.1k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Ruby is Unlike a Banana
tanoku
97
11k
A talk about libgit2
tanoku
11
1.7k
Other Decks in Programming
See All in Programming
LLM Observabilityによる 対話型音声AIアプリケーションの安定運用
gekko0114
2
430
[KNOTS 2026登壇資料]AIで拡張‧交差する プロダクト開発のプロセス および携わるメンバーの役割
hisatake
0
290
Best-Practices-for-Cortex-Analyst-and-AI-Agent
ryotaroikeda
1
110
Apache Iceberg V3 and migration to V3
tomtanaka
0
160
Raku Raku Notion 20260128
hareyakayuruyaka
0
330
Grafana:建立系統全知視角的捷徑
blueswen
0
330
AI Agent の開発と運用を支える Durable Execution #AgentsInProd
izumin5210
7
2.3k
24時間止められないシステムを守る-医療ITにおけるランサムウェア対策の実際
koukimiura
1
110
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
470
要求定義・仕様記述・設計・検証の手引き - 理論から学ぶ明確で統一された成果物定義
orgachem
PRO
1
160
AI Schema Enrichment for your Oracle AI Database
thatjeffsmith
0
310
humanlayerのブログから学ぶ、良いCLAUDE.mdの書き方
tsukamoto1783
0
200
Featured
See All Featured
sira's awesome portfolio website redesign presentation
elsirapls
0
150
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.9k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Technical Leadership for Architectural Decision Making
baasie
2
250
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.6k
The Art of Programming - Codeland 2020
erikaheidi
57
14k
A Modern Web Designer's Workflow
chriscoyier
698
190k
So, you think you're a good person
axbom
PRO
2
1.9k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
51
Site-Speed That Sticks
csswizardry
13
1.1k
A Soul's Torment
seathinner
5
2.3k
Transcript
None
select a random element
select a random element ‘tis one is ok.
None
None
Information Theory
hard TOPIC Information Theory
hard TOPIC dumb SPEAKER + Information Theory
0≤H(X)≤1 where X is a discrete random variable
0≤H(X)≤1 where X is a discrete random variable unpredictable
0≤H(X)≤1 where X is a discrete random variable unpredictable always
the same
None
ask a question.
None
bool is_random(char *bytes, size_t n) { }
bool is_random(char *bytes, size_t n) { } AGHHH
UNIFORM distribution
UNIFORM distribution
select a random element array[rand() % array.size]
select a random element array[rand() % array.size] UNIFORM distribution
select a random element array[rand() % array.size] UNIFORM distribution
select a random element array[rand() % array.size] UNIFORM distribution AGHHH
This is how you kill the RANDOM pnrg array
This is how you kill the RANDOM a pnrg array
This is how you kill the RANDOM a pnrg array
This is how you kill the RANDOM a a pnrg
array
This is how you kill the RANDOM a a pnrg
array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
pnrg array
This is how you kill the RANDOM a a a
b pnrg array
This is how you kill the RANDOM a a a
b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
This is how you kill the RANDOM a a a
b b pnrg array
how to FIX:
how to FIX: 1. Random is hard
how to FIX: 1. Random is hard 2. Run away
how to FIX: 1. Random is hard 2. Run away
Math.random() // between 0.0 and 1.0 Javascript
how to FIX: 1. Random is hard 2. Run away
how to FIX: 1. Random is hard 2. Run away
prng.rand(5..9) #=> one of [5, 6, 7, 8, 9] prng.rand(5...9) #=> one of [5, 6, 7, 8] Ruby
Good.
Good. (but I don’t care)
None
“PRNGs and Hash functions are in the same family of
algorithms”
None
hash tables out of nowhere!
hash tables out of nowhere! O(1)
hash tables out of nowhere! O(1) uniform
pathological average data set: O(1)
pathological average data set: O(1)
pathological average data set: O(1) O(n)
ONE fix
ONE fix INT_MAX % size == 0
collide make them
collide make them • Brute force
collide make them • Brute force • MITM
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
collide make them • Brute force • MITM • Equivalent
substrings
problem & that’s a
problem & that’s a painful comparisons
problem & that’s a painful comparisons ~700ms responses
MANY fixes
MANY fixes (but only one is right)
MANY fixes (but only one is right) 1. Limiting request
size
this is bad and you should feel bad! MANY fixes
(but only one is right) 1. Limiting request size
MANY fixes (but only one is right) 2. Changing the
hash table
MANY fixes (but only one is right) 2. Changing the
hash table (no comment)
MANY fixes (but only one is right) 3. Bring back
the random
None
“Randomness is too important to be left to chance”
Thanks. “Randomness is too important to be left to chance”