Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Dive into Momento with LangChain
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Kazuki Maeda
June 22, 2023
Technology
1
390
Deep Dive into Momento with LangChain
もめんと Meet-up in June #2
Kazuki Maeda
June 22, 2023
Tweet
Share
More Decks by Kazuki Maeda
See All by Kazuki Maeda
敢えて生成AIを使わないマネジメント業務
kzkmaeda
2
700
Amazon Bedrockで実現する 新たな学習体験
kzkmaeda
3
1.9k
日本の教育の未来 を考える テクノロジーは教育をどのように変えるのか
kzkmaeda
1
300
モノリスの認知負荷に立ち向かう、コードの所有者という思想と現実
kzkmaeda
0
270
エンジニアリング価値を黒字化する バリューベース戦略を用いた 技術戦略策定の道のり
kzkmaeda
9
7.3k
現場の種を事業の芽にする - エンジニア主導のイノベーションを事業戦略に装着する方法 -
kzkmaeda
2
6.9k
生成AIを用いた 新しい学びの体験を 提供するまでの道のり
kzkmaeda
0
440
生成AIによって変わる世界 -可能性とリスクについて考える-
kzkmaeda
2
400
新しいことを組織ではじめる、そしてつづける
kzkmaeda
5
1.1k
Other Decks in Technology
See All in Technology
外部キー制約の知っておいて欲しいこと - RDBMSを正しく使うために必要なこと / FOREIGN KEY Night
soudai
PRO
12
5.6k
20260204_Midosuji_Tech
takuyay0ne
1
160
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
3
210
Agile Leadership Summit Keynote 2026
m_seki
1
650
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
460
日本の85%が使う公共SaaSは、どう育ったのか
taketakekaho
1
230
データの整合性を保ちたいだけなんだ
shoheimitani
8
3.2k
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
360
22nd ACRi Webinar - NTT Kawahara-san's slide
nao_sumikawa
0
100
Frontier Agents (Kiro autonomous agent / AWS Security Agent / AWS DevOps Agent) の紹介
msysh
3
180
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
190
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
180
Featured
See All Featured
KATA
mclloyd
PRO
34
15k
Design in an AI World
tapps
0
140
Deep Space Network (abreviated)
tonyrice
0
64
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
79
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
740
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
350
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
830
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Statistics for Hackers
jakevdp
799
230k
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.4k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
Transcript
Deep Dive into Momento with LangChain もめんと Meet-up in June
#2 kzk_maeda
Kazuki Maeda @kzk_maeda SRE @atama plus AWS Community Builders AWS
Startup Community Core Member 7+ years of experience of AWS Like: Lambda / Step Functions / Glue / MWAA / Athena 最近はGoogle CloudとLLM系を勉強中 自己紹介
agenda Momento with LangChainを触ってみる Momento with LangChainのコードを追ってみる 今後の期待
agenda Momento with LangChainを触ってみる Momento with LangChainのコードを追ってみる 今後の期待
Momento Cacheとは • Serverless Cache Service • Web上でセットアップして、SDKを埋め込むだけで クラスターセットアップなど不要で利用開始できる •
キャパシティの管理、プロビジョニング、パフォーマンスモニタリングなど オペレーション業務からの解放
LangChainとは • LLM(大規模言語モデル)を利用したアプリケーション開発に利用できる ライブラリ • 各種LLM APIの抽象化、独自データのLoader、ツール群の組み合わせなどの 様々な機能が提供されている • バージョンアップ頻度が異常
なぜLangChainとMomento? https://twitter.com/LangChainAI/status/1662138670332395520?s=20
なぜLangChainとMomento? https://python.langchain.com/docs/ecosystem/integrations/momento
なぜLangChainとMomento? https://www.gomomento.com/blog/momento-is-now-fully-integrated-into-the-langchain-ecosystem
LangChainでMomentoが使える場所 • LLM Cache • Conversation Memory
LLM Cache 通常LangChainでは、都度OpenAIなどのLLMサービスとやりとりをしますが
LLM Cache Cacheが効いていると、InterceptしてCacheからResponseを返します
LLM Cache 実装 数行のコードで実装可能
LLM Cache クエリ時間比較 同一のPromptであれば実行時間を90%以上低減
LLM Cache Token消費量比較 CacheがAnswerを返すのでOpenAIのToken消費量は0
LLM Cache 時間もコストも削減が見込める!!
Conversation Memory 通常、LangChainからLLMへのRequestは状態を持たないので独立実行 →以前の会話内容をLangChainは記憶しない
Conversation Memory ConversationChainのMemoryとしてMomentoを活用し、会話の流れを作れる
Conversation Memory 実装 こちらもシンプルなコードで実装可能
agenda Momento with LangChainを触ってみる Momento with LangChainのコードを追ってみる 今後の期待
注 ここからLangChainのコードを眺めていきますが、 冒頭で紹介したように、LangChainの更新頻度は異常です。 以降のコードは version 0.0.207 のものとなっております。 また、説明の都合でコードの一部のみ抜粋して表示します。
LLM Cache 中で何が行われているのか追ってみましょう
LLM Cache llm_cache が有効であるとcacheに問い合わせる機構が LLMの基底クラスに定義されている
LLM Cache PromptとLLMのparameterをhash化して str castしたtextをKeyにして、Momentoに格納
LLM Cache こんな感じでCacheが衝突しないようになっている
Conversation Memory 中で何か行われているのか追ってみましょう
Conversation Memory ConversationChainの中でmemoryをセットできる
Conversation Memory デフォルトで message_store: 文字列をprefixに付与して session_id を追加したtextをKeyにしている
Conversation Memory plain textをKeyのprefixに追加することで、 CacheのKey(hash化された文字列)との衝突を 抑制している??という推測(中の人教えてください)
ここまで追ってみて • ライブラリを利用する側はシンプルに使えるようにいろんな処理が抽象化されてい る一方、実装側では衝突を防ぐための仕組みが入っていたりと工夫されていること がわかった • 実際にデバッグしてCache Keyを特定してコンソールから確認することができ、楽し かった
agenda Momento with LangChainを触ってみる Momento with LangChainのコードを追ってみる 今後の期待
今後の期待 • Cache機構の拡大 ◦ (LangChainの対応が必要かもしれませんが) Embeddingの生成など、他にもTokenを利用し、時 間がかかる処理があるので、そこでも Cacheが効かせられると嬉しいなと思った • Vector
Storeとしての利用 ◦ 時限式で消えるVector Storeという用途がLLMアプリケーションの中ではそこそこ求められるケース がありそう ◦ Vector Storeが消えていたら新規に Embedding生成してStoreすることでデータ鮮度を高く保つとか ◦ Momentoでそれが実現できると管理が楽で嬉しいなと思った
今後の期待 • 特にVector Storeとして使えると、こういう仕組みを作る時に使い勝手が 非常にいい(気がします)
Thank you