Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
プロンプトエンジニアリングでがんばらない-Agentic Workflow へ-近藤憲児
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Kenji KONDO
April 24, 2024
Technology
6
4.4k
プロンプトエンジニアリングでがんばらない-Agentic Workflow へ-近藤憲児
Kenji KONDO
April 24, 2024
Tweet
Share
More Decks by Kenji KONDO
See All by Kenji KONDO
「AI倫理」以前_近藤憲児
kenjikondobai
1
43
AI_Agent_の作り方_近藤憲児
kenjikondobai
19
7.4k
なぜ今 AI Agent なのか _近藤憲児
kenjikondobai
4
6.5k
「これが最小になる値はな〜んだ?」問題_最適化問題を考える_近藤憲児
kenjikondobai
0
240
AI ChatBot 開発 Tips-近藤憲児
kenjikondobai
0
230
最適ワークスとAI-近藤憲児
kenjikondobai
0
97
LLMの評価-近藤憲児
kenjikondobai
1
440
スカイディスクの LLM の取り組み-近藤憲児
kenjikondobai
0
360
Spring Cloud Data Flow で構成される IIJ IoTサービス
kenjikondobai
0
420
Other Decks in Technology
See All in Technology
データの整合性を保ちたいだけなんだ
shoheimitani
8
3.2k
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
480
SchooでVue.js/Nuxtを技術選定している理由
yamanoku
3
210
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
190
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
2
770
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
3
230
量子クラウドサービスの裏側 〜Deep Dive into OQTOPUS〜
oqtopus
0
150
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
420
22nd ACRi Webinar - ChipTip Technology Eric-san's slide
nao_sumikawa
0
100
制約が導く迷わない設計 〜 信頼性と運用性を両立するマイナンバー管理システムの実践 〜
bwkw
3
1.1k
SRE Enabling戦記 - 急成長する組織にSREを浸透させる戦いの歴史
markie1009
0
170
Featured
See All Featured
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
830
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
340
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
220
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
330
KATA
mclloyd
PRO
34
15k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
320
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
Site-Speed That Sticks
csswizardry
13
1.1k
Transcript
プロンプトエンジニアリングで がんばらない − Agentic Workflow へ −
- LLM アプリの品質(出力の安定性、速度など)を上げる手段として、 プロンプトエンジニアリング以外の手段があるということ - この手段に隣接した領域として Agentic Workflow と呼ばれるデザインパター ンがあること
- さわりだけご紹介 今日お伝えしたいこと
「Discord で雑に共有された記事をなんでも要約する」自作アプリ • YouTube の動画 • arXiv の論文 •
SpeakerDeck のスライド • Web 上の記事 • … “Summarize Anything”
• Router で何の要約を求められているかを判断 • 判断に基づいて、専用の Summarizer に要約を任せる “Summarize Anything” のアーキテクチャ
Router YouTube Summarizer Web Summarizer arXiv Summarizer どの Summarizer に 委譲すべきかを判断 … ページに アクセスして本 文を取得して 要約 委譲
Router でやりたいこと • そもそも要約を必要とする文章 なのかを判断する • URL の文字列を抽出 • その
URL が YouTube なのか arXiv なのかの判断 • これら結果を JSON として出力 させる(以下はその例) Router の実装(昔) { "summary_required": true, "url": "https://arxiv.org/pdf/2402.05120.pdf", "method": "arXiv" }
問題 • 品質が全然安定しない。体感 3 割失敗 する ◦ JSON の所定のフォーマットになら ない
◦ URL があるのにそれを抽出しない ◦ … → プロンプトエンジニアリングを頑張ったが、 すぐに限界を感じた Router の実装(昔)
処理を分けた Router の実装(今) URL 抽出 URL から委 譲先を 選択 →
動作が劇的に安定した。ほぼ 100 % 間違わない。 URL の文字列 “論文 https://arxiv.org…” “arXiv” Router
さらに LLM の性能を落 とした Router の実装(今) URL 抽出 URL から委
譲先を 選択 → 品質に変化なし。むしろ速度上がるし、コスト下がるしで、嬉しい Router gpt-4 → gpt-3.5-turbo gpt-4 → gpt-3.5-turbo
• 「zero-shot で巧妙にプロンプトエンジニアリングをして頑張る」よりも「命令をシン プルにしたタスクを多量に LLM に依頼する」ほうがよい • 「zero-shot で gpt-4
や claude-3-opus のような賢い LLM を使う」よりも 「gpt-3.5-turbo や claude-3-haiku のような賢くないけど軽量でコスト低い LLM を 細かく使う」ほうが、品質も速度もコストも満足いく この手法は普遍性があるな、と思っていた。 他にも例えば、要約した文章が日本語じゃなかったり、制約条件をちゃんと守っていなかったりした ときも、もう一度 LLM を call してそれを添削してもらう、ということをすると、およそ満足の行く品質 で安定して出力された。 あと、自然とモジュール化の考え方になっているので、それぞれのモジュール別に改善やテストな どがやりやすい。 「LLM を call しまくる」という戦略
“Agentic Workflow” 単なる経験則に過ぎなかったけども、最近 Andrew Ng がまさにこれに関連したこ とを言っている動画を見つけた そこでは Agentic Workflow
という名前で、 LLM アプリの性能を上げる方法を説明 していた
“Agentic Workflow” 「エッセイをバックスペース無しではじめから最後まで間違えの無いように書いて」と 依頼するよりも、「アウトラインを抽出して」「それに対してドラフトを書いて」「それを 添削して」... と分けて依頼するアイディア https://youtu.be/sal78ACtGTc?si=vFpxwR47DoNaQqiz
“Agentic Workflow” zero-shot の GPT-4 よりもAgentic Workflow を適用し た GPT-3.5
のほうが良い評価を得ている。 https://youtu.be/sal78ACtGTc?si=vFpxwR47DoNaQqiz 上の 4 つのデザインパターンについて述べられてい る。 → Agentic Workflow や Agent については、今いろいろ実装して試している(そして苦労し ている)。役に立ちそうなこと見つけたら、また共有します!