Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Visualization Grammar
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Eitan Lees
March 03, 2020
Programming
9
930
Visualization Grammar
A brief tour of the Vega/Vega-Lite visualization grammar used in Altair
Eitan Lees
March 03, 2020
Tweet
Share
More Decks by Eitan Lees
See All by Eitan Lees
Visualization
eitanlees
150
17k
Matplotlib
eitanlees
8
1.1k
Altair Tutorial
eitanlees
4
1k
Scientific Visualization
eitanlees
6
800
Other Decks in Programming
See All in Programming
生成AIを使ったコードレビューで定性的に品質カバー
chiilog
1
250
責任感のあるCloudWatchアラームを設計しよう
akihisaikeda
3
160
Package Management Learnings from Homebrew
mikemcquaid
0
210
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
140
AI Schema Enrichment for your Oracle AI Database
thatjeffsmith
0
250
CSC307 Lecture 04
javiergs
PRO
0
660
Amazon Bedrockを活用したRAGの品質管理パイプライン構築
tosuri13
4
250
Spinner 軸ズレ現象を調べたらレンダリング深淵に飲まれた #レバテックMeetup
bengo4com
1
230
Lambda のコードストレージ容量に気をつけましょう
tattwan718
0
110
SourceGeneratorのススメ
htkym
0
190
OSSとなったswift-buildで Xcodeのビルドを差し替えられるため 自分でXcodeを直せる時代になっている ダイアモンド問題編
yimajo
3
610
CSC307 Lecture 03
javiergs
PRO
1
490
Featured
See All Featured
First, design no harm
axbom
PRO
2
1.1k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
130
Marketing to machines
jonoalderson
1
4.6k
The Limits of Empathy - UXLibs8
cassininazir
1
210
RailsConf 2023
tenderlove
30
1.3k
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
350
GitHub's CSS Performance
jonrohan
1032
470k
Fireside Chat
paigeccino
41
3.8k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
750
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.8k
Transcript
Data Mark Encoding Transform Scale Guide Visualization Grammar
Data Mark Encoding Transform Scale Guide A B C &
Variables Observations Tabular Data A B C
Data Mark Encoding Transform Scale Guide A,B,C,D,E 4,6,4,4,3 4,4,8,4,3 7,5,5,0,1
5,9,3,0,5 0,1,2,4,2 [ { "A":4, "B":6, "C":4, "D":4, "E":3 }, { "A":4, "B":4, "C":8, "D":4, "E":3 }, { "A":7, "B":5, "C":5, "D":0, "E":1 }, { "A":5, "B":9, "C":3, "D":0, "E":5 }, { "A":0, "B":1, "C":2, "D":4, "E":2 } ] https://eitanlees.com/ABC.csv
Data Mark Encoding Transform Scale Guide B A A A
C C C B B and many more ... Text Circle Bar Line
Data Mark Encoding Transform Scale Guide X Position Y Position
Size Color ⠇ Channel A B C D ⠇ Variable
Data Mark Encoding Transform Scale Guide Calculate Fold Filter Aggregate
and many more ...
Data Mark Encoding Transform Scale Guide f(domain) → range
Data Mark Encoding Transform Scale Guide A B C Legend
Data Mark Encoding Transform Scale Guide Let’s make a chart
Data Mark Encoding Transform Scale Guide import altair as alt
from vega_datasets import data iris = data.iris() sepalLength sepalWidth PetalLength PetalWidth species 5.1 3.5 1.4 0.2 setosa 4.9 3.0 1.4 0.2 setosa 4.7 3.2 1.3 0.2 setosa 4.6 3.1 1.5 0.2 setosa ⠇
Data Mark Encoding Transform Scale Guide import altair as alt
from vega_datasets import data iris = data.iris() alt.Chart(iris).mark_circle()
Data Mark Encoding Transform Scale Guide import altair as alt
from vega_datasets import data iris = data.iris() alt.Chart(iris).mark_circle() Without an encoding our chart is not very interesting
Data Mark Encoding Transform Scale Guide import altair as alt
from vega_datasets import data iris = data.iris() alt.Chart(iris).mark_circle().encode( alt.X('petalLength'), alt.Y('petalWidth') )
Data Mark Encoding Transform import altair as alt from vega_datasets
import data iris = data.iris() alt.Chart(iris).mark_circle().encode( alt.X('petalLength'), alt.Y('petalWidth'), alt.Color('species') ) Scale Guide
Data Mark Encoding Transform import altair as alt from vega_datasets
import data iris = data.iris() alt.Chart(iris).mark_circle().encode( alt.X('petalLength'), alt.Y('petalWidth'), alt.Color('species') ) Scale Guide Note that the guides and scales are automatically generated for us
Data Mark Encoding Transform import altair as alt from vega_datasets
import data iris = data.iris() alt.Chart(iris).mark_circle().encode( alt.X('petalLength'), alt.Y('petalWidth'), alt.Color('species') ).transform_filter( alt.datum.sepalWidth < 3 ) Scale Guide