Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data-driven Innovation
Search
Matt Wood
October 10, 2012
Technology
1
420
Data-driven Innovation
Slides from my session at the #AWS Public Sector Summit, 2012.
Matt Wood
October 10, 2012
Tweet
Share
More Decks by Matt Wood
See All by Matt Wood
Field Notes from Expeditions in the Cloud
mza
2
460
A Platform for Big Data
mza
6
810
The Data Lifecycle
mza
5
550
Provision Throughput Like a Boss
mza
0
500
Impact of Cloud Computing: Life Sciences
mza
2
900
Latency's Worst Nightmare: Performance Tuning Tips and Tricks
mza
4
1.1k
Under the Covers of DynamoDB
mza
4
1.2k
From Analytics to Intelligence: Amazon Redshift
mza
9
1k
Scaling Science
mza
3
550
Other Decks in Technology
See All in Technology
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
210
日本の85%が使う公共SaaSは、どう育ったのか
taketakekaho
1
240
Webhook best practices for rock solid and resilient deployments
glaforge
2
300
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
500
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
340
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
2k
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
(技術的には)社内システムもOKなブラウザエージェントを作ってみた!
har1101
0
140
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
2.5k
今こそ学びたいKubernetesネットワーク ~CNIが繋ぐNWとプラットフォームの「フラッと」な対話
logica0419
5
370
Bill One急成長の舞台裏 開発組織が直面した失敗と教訓
sansantech
PRO
2
400
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
3
220
Featured
See All Featured
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
330
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
3k
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
390
GraphQLとの向き合い方2022年版
quramy
50
14k
Fireside Chat
paigeccino
41
3.8k
Heart Work Chapter 1 - Part 1
lfama
PRO
5
35k
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
230
Everyday Curiosity
cassininazir
0
130
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.9k
sira's awesome portfolio website redesign presentation
elsirapls
0
150
Transcript
Data-driven innovation
[email protected]
Dr. Matt Wood @mza
Hello
Hello
Data
DNA
Chromosome 11 : ACTN3 : rs1815739
Chromosome X : rs6625163
Chromosome 19 : FUT2 : rs601338
Chromosome 2 : rs10427255
TYPE II Chromosome 10 : rs7903146
+0.25 Chromosome 15 : rs2472297
I know this, because...
None
A T C G G T C C A G
G
A T C G G T C C A G
G A G C C A G G U C C Transcription
A T C G G T C C A G
G A G C C A G G U C C Translation Ser Glu Val Transcription
None
None
Chromosome 11 : ACTN3 : rs1815739
Chromosome X : rs6625163
Chromosome 19 : FUT2 : rs601338
Chromosome 2 : rs10427255
TYPE II Chromosome 10 : rs7903146
+0.25 Chromosome 15 : rs2472297
I know all that, because...
Human Genome Project
40 species ensembl.org
Compare
Change
Less
None
None
Compare
Transformative
None
Data generation costs are falling everywhere
Customer segmentation, financial modeling, system analysis, line of sight, business
intelligence.
Opportunity
Transformation
Innovation
Generation Collection & storage Analytics & computation Collaboration & sharing
Generation Collection & storage Analytics & computation Collaboration & sharing
lower cost, increased throughput
Generation Collection & storage Analytics & computation Collaboration & sharing
lower cost, increased throughput highly constrained
Barrier
Data generation challenge X
Analytics challenge
Accessibility challenge
Enter the AWS Cloud
Utility
Remove constraints
Data-driven innovation
Distributed
2
2 Software for distributed storage & analysis
2 Software for distributed storage & analysis Infrastructure for distributed
storage & analysis
Software Frameworks for data-intensive work loads. Distributed by design.
Infrastructure Platform for data-intensive work loads. Distributed by design.
Support the data timeline
Generation Collection & storage Analytics & computation Collaboration & sharing
highly constrained
Generation Collection & storage Analytics & computation Collaboration & sharing
Lower the barrier to entry
Agility
Responsive
Generation Collection & storage Analytics & computation Collaboration & sharing
Generation DynamoDB Analytics & computation Collaboration & sharing
Generation DynamoDB EC2, Elastic MapReduce Collaboration & sharing
Generation DynamoDB EC2, Elastic MapReduce S3, Public Datasets
Tools and techniques for working productively with data
Scale
Secure
2 Software for distributed storage & analysis Infrastructure for distributed
storage & analysis
Amazon EC2
Scale out systems Embarrassingly parallel Queue based distribution Small, medium
and high scale
High performance
High performance Compute performance
Cluster Compute Intel Xeon E5-2670 10 gigabit, non-blocking network 60.5
Gb Placement groupings
Cluster Compute Intel Xeon E5-2670 10 gigabit, non-blocking network 60.5
Gb Placement groupings +GPU
240 TFLOPS
High performance Compute performance IO performance
Unstructured
Variable
Amazon DynamoDB Predictable, consistent performance Unlimited storage Single digit millisecond
latencies No schema. Zero admin.
...and SSDs for all
hi1.4xlarge 2 x 1Tb SSD storage 10 gigabit networking HVM:
90k IOPS read, 9k to 75k write PV: 120k IOPS read, 10k to 85k write
Netflix “The hi1.4xlarge configuration is about half the system cost
for the same throughput.” http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
Provisioned IOPS Provision required IO performance EBS optimized instances
Cost optimization
Reserved capacity
Reserved capacity On-demand
Reserved capacity On-demand
Spot instances
None
$0.2530 vs $2.40
2 Software for distributed storage & analysis Infrastructure for distributed
storage & analysis
map/reduce
Map. Reduce.
Write functions. Scale up.
Hadoop
Undi erentiated heavy lifting
Amazon Elastic MapReduce Managed Hadoop Clusters Easy to provision and
monitor Write two functions. Scale up. Choice of Hadoop flavors
Amazon Elastic MapReduce Integrates with S3 Analytics for DynamoDB Perfect
for Spot pricing
Input data S3
Elastic MapReduce Code Input data S3
Elastic MapReduce Code Name node Input data S3
Elastic MapReduce Code Name node Input data S3 Elastic cluster
Elastic MapReduce Code Name node Input data S3 Elastic cluster
HDFS
Elastic MapReduce Code Name node Input data S3 Elastic cluster
HDFS Queries + BI Via JDBC, Pig, Hive
Elastic MapReduce Code Name node Output S3 + SimpleDB Input
data S3 Elastic cluster HDFS Queries + BI Via JDBC, Pig, Hive
Output S3 + SimpleDB Input data S3
CDC Centers for Disease Control and Prevention
“BioSense 2.0 protects the health of the American people by
providing timely insight into the health of communities, regions, and the nation by o ering a variety of features to improve data collection, standardization, storage, analysis, and collaboration”
Health data Collection & storage Analytics & computation Collaboration &
sharing
Health data Collection & storage Analytics & computation Collaboration &
sharing highly constrained
HIPAA, HITECH, FISMA Moderate
GovCloud
Beyond a definition of Big Data
Chromosome 11 : ACTN3 : rs1815739
Chromosome X : rs6625163
Chromosome 19 : FUT2 : rs601338
Chromosome 2 : rs10427255
TYPE II Chromosome 10 : rs7903146
+0.25 Chromosome 15 : rs2472297
Thank you aws.amazon.com @mza
[email protected]