Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習と数理最適化の融合-文脈付き確率的最短路を例として-
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
MIKIO KUBO
April 30, 2024
Research
2
980
機械学習と数理最適化の融合-文脈付き確率的最短路を例として-
機械学習と数理最適化の融合-文脈付き確率的最短路を例として-
MIKIO KUBO
April 30, 2024
Tweet
Share
More Decks by MIKIO KUBO
See All by MIKIO KUBO
The Fusion of Mathematical Optimization and AI (MOAI): History and Outlook (Final Version)
mickey_kubo
0
55
The Fusion of Mathematical Optimization and AI (MOAI): History and Outlook (Short Version)
mickey_kubo
1
43
The Fusion of Mathematical Optimization and AI (MOAI): History and Outlook
mickey_kubo
1
80
History and Future of MO+AI
mickey_kubo
1
73
History and Future of MO+AI (Fusion of Mathematical Optimization and Artificial Intelligence)
mickey_kubo
1
35
Next.js 入門解説: Reactとの決定的な違いとApp Routerに基づくモダンWeb開発
mickey_kubo
1
120
Google Antigravity and Vibe Coding: Agentic Development Guide
mickey_kubo
7
380
React完全入門
mickey_kubo
1
120
TypeScript初心者向け完全ガイド
mickey_kubo
1
130
Other Decks in Research
See All in Research
その推薦システムの評価指標、ユーザーの感覚とズレてるかも
kuri8ive
1
320
Proposal of an Information Delivery Method for Electronic Paper Signage Using Human Mobility as the Communication Medium / ICCE-Asia 2025
yumulab
0
180
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
580
都市交通マスタープランとその後への期待@熊本商工会議所・熊本経済同友会
trafficbrain
0
130
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
140
データサイエンティストの業務変化
datascientistsociety
PRO
0
230
生成AI による論文執筆サポート・ワークショップ 論文執筆・推敲編 / Generative AI-Assisted Paper Writing Support Workshop: Drafting and Revision Edition
ks91
PRO
0
120
LiDARセキュリティ最前線(2025年)
kentaroy47
0
140
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
660
CoRL2025速報
rpc
4
4.2k
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
130
Featured
See All Featured
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
270
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
410
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
The untapped power of vector embeddings
frankvandijk
1
1.6k
What's in a price? How to price your products and services
michaelherold
247
13k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
58
50k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
120
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
440
Code Review Best Practice
trishagee
74
20k
Transcript
機械学習と最適化の融合 ⽂脈付き確率的最適化 と最短路を例として Mikio Kubo
確率的最短路問題 あなたは家(始点s)から⼤学(終点t)まで⾞で通勤している.⾼ 速を使う道 (s,1), (2,t)を使うと最短2時間で着くが,混雑するときに は6時間かかる.授業開始までTmax (=5) 時間の余裕があるが,でき るだけ早く着きたい.どのような経路を選択すれば良いだろうか? 移動時間
s t 1 2 1 3.5 1.5 確率 ½ で 3 確率 ½ で 1 確率 ½ で 3 確率 ½ で 1
期待値による最適化 パス s => 1 => t が最適 (期待値は4) s
t 1 2 1 3.5 1.5 期待値2 確率 ½ で 3 確率 ½ で 1 期待値 2 確率 ½ で 3 確率 ½ で 1 枝 の移動時間が独⽴と仮定 3+3 = 6 確率 ¼ 3+1 or 1+3 =4 確率 ½ 1+1 = 2 確率 ¼ 確率 ¼ で実⾏不能 (Tmax=5)
確率的最適化の解 パス s => 2 => t が最適 (期待値は 3.5
+ 1.5 = 5) s t 1 2 1 3.5 1.5 期待値2 確率 ½ で 3 確率 ½ で 1 期待値 2 確率 ½ で 3 確率 ½ で 1 Tmax=5のときの唯⼀の実⾏可能解
その他の解 パス s => 1=> 2 => t が最適 (期待値は
(5.5 + 3.5)/2 = 4.5) s t 1 2 1 3.5 1.5 期待値2 確率 ½ で 3 確率 ½ で 1 期待値 2 確率 ½ で 3 確率 ½ で 1 Tmax=5.5のときの最適解 枝 の移動時間が独⽴と仮定 3+1+1.5 = 5.5 確率 ½ 1+1+1.5 = 3.5 確率 ½ 確率 ½ で実⾏不能 (Tmax=5)
リコース解 事前にパスを決めておく即時決定 (here & now) でなく,途中の情報でパス を変えて良い待機決定(wait & see; リコース)
点1まで移動し,s=>1 の移動時間が1なら 1=> t,移動時間が3なら 1=>2=>t を選ぶ(期待値は (5.5 + 2)/2 = 3.75) s t 1 2 1 3.5 1.5 期待値2 確率 ½ で 3 確率 ½ で 1 期待値 2 確率 ½ で 3 確率 ½ で 1 枝の移動時間が同⼀と仮定 1+1 = 2 確率 ½ 3+1+1.5 = 5.5 確率 ½ Tmax=5.5のときの最適⽅策
⽂脈付き予測・最適化 過去の天気(context; ⽂脈)と移動時間のデータをもっている.天気予 報は当たっているとしたとき移動時間を予測し,それをもとに経路を選 択したい.(単に予測してから最適化は「期待値を最⼩化」と同じ.) s t 1 2 1
3.5 1.5 過去のデータ ☀ 1,1,1,3,1,1,… ☂ 3,3,1,3,3,1,… 過去のデータ ☀ 1,1,3,1,1,1,… ☂ 1,3,1,3,3,3,… ⽂脈 F = ☀ ☂ ̂ 𝑐 = 𝐸 𝑐 𝐹 ] F の条件下での移動費⽤ c の予測値 ☂ ̂ 𝑐 = 2.5 ☀ ̂ 𝑐 = 1.5
⽂脈付き予測・最適化 (1) 費⽤の実現値をもとに最適化した場合との差をロス関数として機械学習 (Smart Prediction-then-Optimize) 最適解オラクル 実現値 c が既知のときの最適値 𝑧∗
𝑐 = min "∈$ 𝑐%𝑥 ☀で実現値が移動時間 3 の場合 𝐿𝑂𝑆𝑆 ̂ 𝑐, 𝑐 = 𝑐!𝑥∗ - 𝑐 − 𝑧∗ 𝑐 = 3 + 3 − 3.5 + 1.5 = 1 SPOロス(⾮凸) 𝑥∗ s t 1 2 1 3.5 1.5 ☀ ̂ 𝑐 = 1.5 ☀ ̂ 𝑐 = 1.5 𝑥∗ ( 𝑐 s t 1 2 1 3.5 1.5 ☀ c = 3 ☀ c = 3 𝑥∗(𝑐)
⽂脈付き予測・最適化 (2) 𝐿𝑂𝑆𝑆# ̂ 𝑐, 𝑐 = max { $∈&
𝑐!𝑥 − 2 ̂ 𝑐!𝑥 } + 2 ̂ 𝑐!𝑥∗ 𝑐 − 𝑧∗ 𝑐 SPO+ロス(凸) SPOロスの上界 線形最適化 データ 解 機械学習 SPO+ロス F 𝐿𝑂𝑆𝑆! ̂ 𝑐, 𝑐 s t 1 2 1 3.5 1.5 ☀ ̂ 𝑐 = 1.5 ☀ ̂ 𝑐 = 1.5 𝑥∗ ( 𝑐 s t 1 2 1 3.5 1.5 ☀ c = 3 ☀ c = 3 𝑥∗(𝑐) = 0 + 2×5 − 5 = 5 (≥ 1)
⽂脈付き予測・ 確率的最適化 ⽂脈から予測し,シナリオ⽣成して確率的最適化 (Estimation-then-Optimize) 様々な確率的最適化の⼿法が使える(CVaR,確率制約,ロバスト) s t 1 2 1
3.5 1.5 ☀ s t 1 2 1 3.5 1.5 ☂