Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習と数理最適化の融合-文脈付き確率的最短路を例として-
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
MIKIO KUBO
April 30, 2024
Research
2
980
機械学習と数理最適化の融合-文脈付き確率的最短路を例として-
機械学習と数理最適化の融合-文脈付き確率的最短路を例として-
MIKIO KUBO
April 30, 2024
Tweet
Share
More Decks by MIKIO KUBO
See All by MIKIO KUBO
The Fusion of Mathematical Optimization and AI (MOAI): History and Outlook (Final Version)
mickey_kubo
0
54
The Fusion of Mathematical Optimization and AI (MOAI): History and Outlook (Short Version)
mickey_kubo
1
42
The Fusion of Mathematical Optimization and AI (MOAI): History and Outlook
mickey_kubo
1
80
History and Future of MO+AI
mickey_kubo
1
73
History and Future of MO+AI (Fusion of Mathematical Optimization and Artificial Intelligence)
mickey_kubo
1
35
Next.js 入門解説: Reactとの決定的な違いとApp Routerに基づくモダンWeb開発
mickey_kubo
1
120
Google Antigravity and Vibe Coding: Agentic Development Guide
mickey_kubo
7
380
React完全入門
mickey_kubo
1
120
TypeScript初心者向け完全ガイド
mickey_kubo
1
130
Other Decks in Research
See All in Research
OWASP KansaiDAY 2025.09_文系OSINTハンズオン
owaspkansai
0
110
2026-01-30-MandSL-textbook-jp-cos-lod
yegusa
0
240
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
300
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.2k
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
660
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
420
ブレグマン距離最小化に基づくリース表現量推定:バイアス除去学習の統一理論
masakat0
0
140
姫路市 -都市OSの「再実装」-
hopin
0
1.6k
存立危機事態の再検討
jimboken
0
240
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
550
Proposal of an Information Delivery Method for Electronic Paper Signage Using Human Mobility as the Communication Medium / ICCE-Asia 2025
yumulab
0
180
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
650
Featured
See All Featured
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
440
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
130
Leo the Paperboy
mayatellez
4
1.4k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
140
Are puppies a ranking factor?
jonoalderson
1
2.7k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
70
WENDY [Excerpt]
tessaabrams
9
36k
Designing Experiences People Love
moore
144
24k
4 Signs Your Business is Dying
shpigford
187
22k
Raft: Consensus for Rubyists
vanstee
141
7.3k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.4k
Transcript
機械学習と最適化の融合 ⽂脈付き確率的最適化 と最短路を例として Mikio Kubo
確率的最短路問題 あなたは家(始点s)から⼤学(終点t)まで⾞で通勤している.⾼ 速を使う道 (s,1), (2,t)を使うと最短2時間で着くが,混雑するときに は6時間かかる.授業開始までTmax (=5) 時間の余裕があるが,でき るだけ早く着きたい.どのような経路を選択すれば良いだろうか? 移動時間
s t 1 2 1 3.5 1.5 確率 ½ で 3 確率 ½ で 1 確率 ½ で 3 確率 ½ で 1
期待値による最適化 パス s => 1 => t が最適 (期待値は4) s
t 1 2 1 3.5 1.5 期待値2 確率 ½ で 3 確率 ½ で 1 期待値 2 確率 ½ で 3 確率 ½ で 1 枝 の移動時間が独⽴と仮定 3+3 = 6 確率 ¼ 3+1 or 1+3 =4 確率 ½ 1+1 = 2 確率 ¼ 確率 ¼ で実⾏不能 (Tmax=5)
確率的最適化の解 パス s => 2 => t が最適 (期待値は 3.5
+ 1.5 = 5) s t 1 2 1 3.5 1.5 期待値2 確率 ½ で 3 確率 ½ で 1 期待値 2 確率 ½ で 3 確率 ½ で 1 Tmax=5のときの唯⼀の実⾏可能解
その他の解 パス s => 1=> 2 => t が最適 (期待値は
(5.5 + 3.5)/2 = 4.5) s t 1 2 1 3.5 1.5 期待値2 確率 ½ で 3 確率 ½ で 1 期待値 2 確率 ½ で 3 確率 ½ で 1 Tmax=5.5のときの最適解 枝 の移動時間が独⽴と仮定 3+1+1.5 = 5.5 確率 ½ 1+1+1.5 = 3.5 確率 ½ 確率 ½ で実⾏不能 (Tmax=5)
リコース解 事前にパスを決めておく即時決定 (here & now) でなく,途中の情報でパス を変えて良い待機決定(wait & see; リコース)
点1まで移動し,s=>1 の移動時間が1なら 1=> t,移動時間が3なら 1=>2=>t を選ぶ(期待値は (5.5 + 2)/2 = 3.75) s t 1 2 1 3.5 1.5 期待値2 確率 ½ で 3 確率 ½ で 1 期待値 2 確率 ½ で 3 確率 ½ で 1 枝の移動時間が同⼀と仮定 1+1 = 2 確率 ½ 3+1+1.5 = 5.5 確率 ½ Tmax=5.5のときの最適⽅策
⽂脈付き予測・最適化 過去の天気(context; ⽂脈)と移動時間のデータをもっている.天気予 報は当たっているとしたとき移動時間を予測し,それをもとに経路を選 択したい.(単に予測してから最適化は「期待値を最⼩化」と同じ.) s t 1 2 1
3.5 1.5 過去のデータ ☀ 1,1,1,3,1,1,… ☂ 3,3,1,3,3,1,… 過去のデータ ☀ 1,1,3,1,1,1,… ☂ 1,3,1,3,3,3,… ⽂脈 F = ☀ ☂ ̂ 𝑐 = 𝐸 𝑐 𝐹 ] F の条件下での移動費⽤ c の予測値 ☂ ̂ 𝑐 = 2.5 ☀ ̂ 𝑐 = 1.5
⽂脈付き予測・最適化 (1) 費⽤の実現値をもとに最適化した場合との差をロス関数として機械学習 (Smart Prediction-then-Optimize) 最適解オラクル 実現値 c が既知のときの最適値 𝑧∗
𝑐 = min "∈$ 𝑐%𝑥 ☀で実現値が移動時間 3 の場合 𝐿𝑂𝑆𝑆 ̂ 𝑐, 𝑐 = 𝑐!𝑥∗ - 𝑐 − 𝑧∗ 𝑐 = 3 + 3 − 3.5 + 1.5 = 1 SPOロス(⾮凸) 𝑥∗ s t 1 2 1 3.5 1.5 ☀ ̂ 𝑐 = 1.5 ☀ ̂ 𝑐 = 1.5 𝑥∗ ( 𝑐 s t 1 2 1 3.5 1.5 ☀ c = 3 ☀ c = 3 𝑥∗(𝑐)
⽂脈付き予測・最適化 (2) 𝐿𝑂𝑆𝑆# ̂ 𝑐, 𝑐 = max { $∈&
𝑐!𝑥 − 2 ̂ 𝑐!𝑥 } + 2 ̂ 𝑐!𝑥∗ 𝑐 − 𝑧∗ 𝑐 SPO+ロス(凸) SPOロスの上界 線形最適化 データ 解 機械学習 SPO+ロス F 𝐿𝑂𝑆𝑆! ̂ 𝑐, 𝑐 s t 1 2 1 3.5 1.5 ☀ ̂ 𝑐 = 1.5 ☀ ̂ 𝑐 = 1.5 𝑥∗ ( 𝑐 s t 1 2 1 3.5 1.5 ☀ c = 3 ☀ c = 3 𝑥∗(𝑐) = 0 + 2×5 − 5 = 5 (≥ 1)
⽂脈付き予測・ 確率的最適化 ⽂脈から予測し,シナリオ⽣成して確率的最適化 (Estimation-then-Optimize) 様々な確率的最適化の⼿法が使える(CVaR,確率制約,ロバスト) s t 1 2 1
3.5 1.5 ☀ s t 1 2 1 3.5 1.5 ☂