Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
尤度/likelihood
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
florets1
October 06, 2023
Education
3
960
尤度/likelihood
florets1
October 06, 2023
Tweet
Share
More Decks by florets1
See All by florets1
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
480
Tableauとggplot2の背景/Background_of_Tableau_and_ggplot2
florets1
0
53
Rで学ぶデータハンドリング入門/Introduction_to_Data_Handling_with_R
florets1
0
130
人工知能はクロスジョインでできている/AI_Is_Built_on_Cross_Joins
florets1
0
83
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
4
430
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
1
450
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
7
2.5k
直積は便利/direct_product_is_useful
florets1
3
450
butterfly_effect/butterfly_effect_in-house
florets1
1
270
Other Decks in Education
See All in Education
学習指導要領と解説に基づく学習内容の構造化の試み / Course of study Commentary LOD JAET 2025
masao
0
130
TeXで変える教育現場
doratex
1
13k
React完全入門
mickey_kubo
1
120
TypeScript初心者向け完全ガイド
mickey_kubo
1
130
HCI Research Methods - Lecture 7 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
国際卓越研究大学計画|Science Tokyo(東京科学大学)
sciencetokyo
PRO
0
47k
Postcards
gabrielramirezv
0
110
160人の中高生にAI・技術体験の講師をしてみた話
shuntatoda
1
300
Leveraging LLMs for student feedback in introductory data science courses (Stats Up AI)
minecr
1
170
Web 2.0 Patterns and Technologies - Lecture 8 - Web Technologies (1019888BNR)
signer
PRO
0
3k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
ロータリー国際大会について~国際大会に参加しよう~:古賀 真由美 会員(2720 Japan O.K. ロータリーEクラブ・(有)誠邦産業 取締役)
2720japanoke
1
770
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
97
6.5k
Leo the Paperboy
mayatellez
4
1.4k
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
Building AI with AI
inesmontani
PRO
1
700
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.6k
Between Models and Reality
mayunak
1
190
Claude Code のすすめ
schroneko
67
210k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
The Spectacular Lies of Maps
axbom
PRO
1
530
The Invisible Side of Design
smashingmag
302
51k
Statistics for Hackers
jakevdp
799
230k
Transcript
1 2023.10.07 Tokyo.R #109 尤度(ゆうど)
2 尤度(ゆうど) ある前提条件に従って結果が出現する場合に、逆に観 察結果からみて前提条件が「何々であった」と推測す る尤もらしさ(もっともらしさ)を表す数値を、 「何々」を変数とする関数として捉えたものである。
3 尤度(ゆうど) ある結果から、どのような前提条件があったと推測す るのが妥当なのかを教えてくれる指標
4 尤度(ゆうど) 尤度とは、観測値が与えられたとき、それを説明する モデルや分布などの母数(パラメーター)の値の尤も らしさのことである。
5 尤度(ゆうど) 想定するパラメーターがある値をとる場合に観測して いる事柄や事象が起こりうる確率のこと。
6 尤度(ゆうど) 確率密度関数において確率変数に観測値を代入したも のをいう。つまり,確率密度を観測値で評価した値で ある。また,これを未知母数の関数とみるとき,とく に尤度関数という。
7 条件付き分布 𝑝(𝑟|𝜃) θ:成功率 r = 1:成功 r = 0:失敗
このような分布をベルヌーイ分布といいます
8 ベルヌーイ分布 𝑝(𝑟|𝜃)を立体化
9 𝑝 𝑟 𝜃 の 𝑟 を固定
10
11 𝑝(𝑟|𝜃)を 𝜃が変数だと考えよう これが尤度(ゆうど)です
12 ベルヌーイ分布 𝑝(𝑟|𝜃) 𝑟を変数として考えると 条件付き分布 𝜃を変数として考えると 尤度(ゆうど)
13 尤度(ゆうど)とは ある結果𝑟から、どのような前提条件𝜃があったと推測 するのが妥当なのかを教えてくれる指標
14 最尤推定 失敗と成功が一回ずつ得られたなら尤度は (1 − 𝜃)𝜃 この尤度が最大となる𝜃は0.5 1 − 𝜃
𝜃 (1 − 𝜃)𝜃
15 参考書 東京大学教養学部統計学教室 編. 統計学入門. 東京大学 出版会, 2014 飯塚修平. ウェブ最適化ではじめる機械学習.
オライ リー・ジャパン, 2020
16 おまけ